Category Archives: Case Studies

Posts related to case studies

ATS Wind Tunnels Designed for SSD and PCIe Thermal Characterization

As was outlined in an earlier article on this blog, it is critical for manufacturers to characterize solid-state drives (SSD) to establish performance parameters in real-world conditions. The previous article explained that SSD experience higher failure rates and reduced lifespan when temperatures increase beyond the standard operating range of 30-40°C.

Wind Tunnels
ATS designed wind tunnels for companies looking to characterize solid-state drives in the PCIe form factor, as show above. (Wikimedia Commons)

Testing processes for SSD are similar to those used for characterizing typical semiconductors. A wind tunnel provides a consistent, controlled, and repeatable environment for data collection and sensors, thermocouples, and an analog-to-digital capture system allows engineers to measure performance when the SSD is impacted by external factors.

ATS designs and fabricates research-quality wind tunnels that can be used for characterizing SSD. The wind tunnels give engineers control over air temperature and velocity. Closed-loop wind tunnels can create environments with temperatures as high as 80°C to provide stressed conditions well above standard operating temperatures. The manufacturer can use this data to set reference points for different environments, such as in 1-U telecommunications chassis or large server boxes.

Recently, ATS has worked with two of the industry’s largest producers of SSD to design wind tunnels that could be used for characterizing drives in PCIe applications. PCIe (peripheral component interconnect express) cards are high-speed serial computer extension cards that connect peripheral devices to the motherboard. In addition to SSD, these cards can be used for graphics processors, Wi-Fi, or other hard drives.

ATS wind tunnels can be used to test airflow and thermal performance for components and boards, as shown in this smoke flow visualization test over a maxiFLOW™ heat sink. (Advanced Thermal Solutions, Inc.)

One of the wind tunnels was a standard, open loop CWT-107™. It can produce uniform and homogeneous flow, up to 5.5 m/s (1100 ft/min) within the wind tunnel’s test section due to its polynomial shape and internal flow management system, which features honeycombs and screens to break up turbulence. The wind tunnel can be operated either vertically or horizontally and the customer chose to use it lying down.

In fact, the customer was very creative in its use of the wind tunnel. A customized cart was built for the wind tunnel to be bolted to and then the cart was wheeled into a large environmental chamber where temperatures could be raised to test levels. The SSD being characterized was a PCIe card with memory installed. There was no fan for the memory and the memory had no shielding or housing.

The customer placed its PCIe-based SSD flat in the test chamber. Power was pulled through the test ports included in the test chamber of the CLWT-107™ (as shown below).

While the wind tunnel was bought for testing SSD, it could be used by the customer to test any electronic component or board.

The second customer purchased a CLWT-115™ closed-loop wind tunnel. In this case, the application required the SSD to be powered through the PCIe back plane, so ATS custom-designed slots in the test section to fit the PCIe form factor. The slots allowed the SSD to remain inside the test section and be connected to a motherboard residing outside the wind tunnel (see below).

Again, the wind tunnel could be used to test any PCIe cards, not just SSD, if the customer desired, as there were also fillers created for the slots to allow the wind tunnel to be used when testing other devices.

The second customer did all of its air velocity and temperature testing in the CLWT-115™, rather than using an environmental chamber like the first customer, because the wind tunnel has a self-contained heating unit that heats air while it circulates during testing.

Wind tunnel controllers and ATVS systems were also purchased by both customers to ensure accurate data collection. The first customer bought an ATVS-NxT™, which is a fully portable scanner that operates with an embedded PC and touch screen control, while the second customer bought the ATVS-2020™, which allows single- or multi-point measurement of both temperature and velocity, and a CLWTC-1000™, which automatically controlled the airflow and temperature through the test chamber.

Both come with Candlestick sensors to control the air velocity in the wind tunnel and thermocouples to control the temperature.

One of the customers also requested a custom, rugged sensor to avoid damage through multiple uses. ATS was able to adapt one of its handheld surface probes, a stainless-steel probe with a pointed tip for exact positioning of the sensor on the desired spot, by reducing the length and designing a custom port that would hold the sensor in place.

SSD are gaining traction in the market, with major hard drive manufacturers and the companies that utilize them both making the switch to solid-state technology. This means that thermal characterization of SSD and thermal management systems deployed to dissipate the heat of these drives are going to be of increasing importance in the coming years.

Using research-quality wind tunnels gives manufacturers a leg up in determining how their drives will perform in different real-world environments and makes the process of SSD characterization easier for users. By working with ATS, companies can tailor their wind tunnels to their specific applications and can be assured of the accuracy of the data that they collect.

Learn more about ATS wind tunnels, sensors, and the entire line of next-generation thermal test instruments at https://www.qats.com/Products/
Instruments. If you have questions about any products or ATS thermal testing services, email ats-hq@qats.com.


For more information about Advanced Thermal Solutions, Inc. (ATS) thermal management consulting and design services, visit https://www.qats.com/consulting or contact ATS at 781.769.2800 or ats-hq@qats.com.

ATS Provides LED Thermal Solution for Big Game

When the big game kicks off on Sunday night, the Patriots will not be the only team from New England shining bright at U.S. Bank Stadium in Minneapolis, Minn. Advanced Thermal Solutions, Inc. (ATS) will also be represented, although not on the gridiron, but rather helping to shine a spotlight on the action on the field.

LED Thermal Solution

Ephesus LED lighting solutions, with ATS thermal management design, will be used in the upcoming Super Bowl at U.S. Bank Stadium in Minneapolis.

In 2015, Ephesus Lighting (Syracuse, N.Y.) was chosen to provide LED lighting solutions for the Minnesota Vikings’ new stadium. The Ephesus system allows for greater control and adjustment, whether responding to the amount of sunlight in the stadium or the light’s color temperature (Ephesus recommends a medium color temperature for football), and does not require a 15-minute window for reaching full brightness like typical stadium lighting. It will also provide energy savings of as much as 75 percent.

“We take the light and purposefully model around obstacles that are on the field, players, the balls, so it’s like being in a portrait studio with lighting behind, lighting in front, and you look perfect,” Ephesus Chief Technology Officer Joe Casper said in a 2015 Vikings.com article. “We take great care of taking light from various aspects of the catwalk, and it’s being aimed to create light from 16 different directions so it gives you the appearance that you’re in a studio.”

To keep their patented LED solution cool, Ephesus partnered with ATS for a casted heat sink, which is large, rugged, and reliable. By providing the proper thermal management, ATS has helped Ephesus optimize the performance of its LED, which have now been used in two stadiums that have hosted the NFL’s championship game.

The first time LED were used was at University of Phoenix Stadium in Glendale, Ariz. when the Patriots beat the Seattle Seahawks.

For its assistance, ATS and other Ephesus partners received special thanks from the lighting company:

The casted heat sink design that ATS devised had several advantages, including a reduced part count, having the enclosure and heat sink in a single unit, and reducing the manufacturing complexity of the thermal solution. With ATS help, the lighting was able to be delivered and installed on time for the game, just as it was for the opening of the new stadium in Minneapolis.

For more information about the design that ATS delivered, read this case study with the engineers that worked on the project: https://www.qats.com/cms/2015/04/28/casting-a-light-on-led-cooling-with-die-cast-heat-sinks.

To learn more about the thermal challenges that LED present, read this article from Design World written by Dr. Kaveh Azar, founder and CEO of ATS: https://www.designworldonline.com/lighting-the-way-for-led-development/#_.

Thanks to the LED expertise of Ephesus and thermal management capabilities of ATS, fans will have a perfect view when the Patriots take the field in search of a sixth title.

For more information about Advanced Thermal Solutions, Inc. (ATS) thermal management consulting and design services, visit https://www.qats.com/consulting or contact ATS at 781.769.2800 or ats-hq@qats.com. To learn more about ATS LED products and consulting, visit https://www.qats.com/Applications/LED-Applications.

ATS Collaborates on SAM Car Featured on the CNBC program ‘Jay Leno’s Garage’

On Jan. 6, 2000, champion race car driver Sam Schmidt crashed his vehicle at the Walt Disney World Speedway in Orlando, Fla. The accident severely injured his spinal cord, leaving him paralyzed from the neck down and with doctors telling him that he would never walk again, let alone get behind the wheel of a car.

SAM Car

ATS partnered with ARROW Electronics to devise a thermal solution for the computer system in the semi-autonomous car that allowed Sam Schmidt to get back behind the wheel. (Advanced Thermal Solutions, Inc.)

Colorado-based neurosurgeon Dr. Scott Falci had other ideas and enlisted the aid of several technology companies, including ARROW Electronics, the Air Force Research Laboratory (AFRL), and Ball Aerospace and Technologies Corp., to make his dream of helping Schmidt drive come to fruition 17 years after the accident.

The result was the SAM Car. Using infrared sensors, cameras, on-board GPS and other next-generation technologies, the team created a semi-autonomous vehicle that Schmidt could power by simply moving his head. Leaning right or left would steer the car, tilting his head back would cause the car to accelerate, and biting down on a special mouthpiece would cause the car to break.

Watch this CNBC video with Jay Leno to learn more and see the car in action:

Advanced Thermal Solutions, Inc. (ATS) was brought in by ARROW to assist with the challenge of providing thermal management for the car’s on-board computer system. ATS designed an enclosure that cooled both sides of the board without the need for a fan and protected it from dust and other debris.

ATS engineers Bahman Tavassoli, Vineet Barot, and Anatoly Pikovsky are proud to have collaborated with these other innovative pioneers to provide Mr. Schmidt with the ability to get back behind the wheel where he belongs.

For more information about Advanced Thermal Solutions, Inc. (ATS) thermal management consulting and design services, visit www.qats.com/consulting or contact ATS at 781.769.2800 or ats-hq@qats.com.

Case Study: Designing Air-to-Air Heat Exchanger With Heat Pipes

Advanced Thermal Solutions, Inc. (ATS) engineers were tasked by a client to design an air-to-air, aluminum heat exchanger with multiple copper heat pipes that could meet high power demands (more than 400W) with a thermal resistance requirement of 0.046°C/W and could withstand a wide range of ambient temperatures from -40°C to 60°C. Also, the separation between the heat pipe’s evaporator and condenser sections needed to be air tight.

Heat Exchanger

ATS engineers were tasked with designing an air-to-air heat exchanger with heat pipes that would fit inside an enclosure. (Advanced Thermal Solutions, Inc.)

Using analytical modeling, ATS engineers calculated the system pressure drop from the heat pipe to the fin block to the flow turn and also the thermal performance of the fins in ducted flow to determine the proper amount of fins to avoid over pressurizing the fans, while at the same time meeting the thermal resistance demands of the system. It was calculated that a maximum of 14 fins per inch could be used, while the overall size was well within the client’s requirements.

Challenge: To design an air-to-air heat exchanger that could handle high power demands of more than 400W and specific requirements on thermal resistance (0.046°C/W).

Chips/Components: Electronics junction box that requires internal air cooling.

Analysis: ATS engineers conducted analysis of the pressure drop across the system from the heat pipe to the fin block to the flow turn section, as well as analyzing the thermal performance of the entire heat exchanger. This analysis included calculating the ducted flow, heat transfer coefficient, and the fin and heat pipe resistance of the exchanger. The analysis also explored the difference between designs with copper and with aluminum fins.

Design Data: The data showed that thermal resistance and pressure drop of the CFD model were within 16% of the analytical model. The thermal performance of the heat exchanger with heat pipes was 0.044°C/W, meeting the client’s requirements.

Solution: The ATS design was optimized for four heat pipes and a suggestion was made to enhance the heat exchanger by using copper fins, rather than aluminum, because of a higher fin efficiency and lower thermal resistance.

Net Result: The customer was supplied with a production design of a heat exchanger block with heat pipes that could fit into the enclosure and provide the necessary forced convection cooling to maintain the proper temperature for the system. ATS also supplied the heat exchangers from the prototype stage to production.

For more information about Advanced Thermal Solutions, Inc. thermal management consulting and design services, visit www.qats.com or contact ATS at 781.769.2800 or ats-hq@qats.com.

Case Study: Thermal Comparison of Copper and Aluminum Heat Sinks

Advanced Thermal Solutions, Inc. (ATS) engineers were tasked by a client to find a more cost-effective and lighter solution for a custom-designed copper heat sink that dissipated heat from four components on a PCB. ATS engineers compared the thermal performance of the copper heat sink to custom aluminum heat sinks embedded with heat pipes.

Aluminum Heat Sinks

ATS engineers worked on a comparison of a copper heat sink with an aluminum heat sink that had embedded heat pipes running underneath the components. Analysis showed that the aluminum heat sink nearly matched the thermal performance of the copper and was within the margin required by the client. (Advanced Thermal Solutions, Inc.)

Using analytical modeling and CFD simulations, the ATS engineers determined that switching to an aluminum heat sink with heat pipes that run underneath the components yielded case temperatures that were greater than 4.35%, on average, of those achieved with the copper heat sink. The largest difference between the two heat sinks was 9.2°C, over a single component.

Challenge: The client wanted a redesign of a custom copper heat sink to an equivalent or better aluminum heat sink with embedded copper heat pipes.

Chips/Components: Two Inphi (formerly ClariPhy) Lightspeed-II CL20010 DSPs at 96 watts and two Xilinx 100G Gearboxes at 40 watts each.

Analysis: Analytical modeling and CFD simulations determined the junction temperatures between the four components when covered by a copper heat sink (Design 1), by an aluminum heat sink with heat pipes that stop in front of the components (Design 2), and by an aluminum heat sink with heat pipes that run underneath the components (Design 3). The analysis demonstrated the difference between the heat sink designs in relation to thermal performance.

Test Data: CFD analysis showed an average component case temperature of 158.8°C with the original copper heat sink design, 158.3°C with Design 2, and 152°C with Design 3. The average difference in temperature between Design 1 and Design 2 was 0.5°C and the average temperature difference between Design 1 and Design 3 was 6.8°C.

Here is a CFD simulation from the top of the aluminum heat sink with the air hidden, showing the temperature gradient through the heat sink. (Advanced Thermal Solutions, Inc.)

Solution: The client was shown that aluminum heat sinks with heat pipes provided nearly the same thermal performance as the original copper heat sink design and at much lower cost and weight. The component junction temperature differences between Design 1 and Design 3 were well within the margin set by the client.

o The simulated air velocity is lower and the airflow cross section is larger than in the actual application, meaning absolute temperatures are higher than the customer has seen in their testing.

Net Result: Despite using conservative thermal conductivity calculations, aluminum heat sinks with heat pipes were shown to be a more cost-effective solution for achieving the client’s thermal needs than copper.

CLICK HERE FOR A TECHNICAL DISCUSSION OF THIS PROJECT.

For more information about Advanced Thermal Solutions, Inc. thermal management consulting and design services, visit www.qats.com or contact ATS at 781.769.2800 or ats-hq@qats.com.