Edge computing devices are often installed environmentally severe and/or remote locations where reliable, long-term operation is essential. It is critical to thermally manage the CPUs, FPGAs, GPUs and other processing devices housed inside. Active cooling from ATS fanSINKs provides the cooling airflow continuously needed at the device level.
fanSINKs feature cross-cut, straight fins that maximize fan airflow for more efficient cooling. They are available for component packages from 27mm-84mm. Depending on their size, fanSINKs can be securely clipped onto a device with the ATS maxiGRIP attachment system, or with PEM screws or push pin hardware for direct attachment to the PCB. Smaller fanSINKs attach with maxiGRIP’s high performance plastic frame clip and 300 series stainless steel spring clip. The secure maxiGRIP attachment eliminates the need to drill holes in the PCB. Larger size fanSINKs fit tightly on components and attach firmly to the PCB with standoff and spring hardware.
fanSINKs are pre-assembled with Chomerics T-412 thermal adhesive tape (smaller sizes), or with Chomerics T-766 phase change thermal interface material (larger sizes). These proven interface materials increase heat flow into the sinks to maximize cooling performance. Fans for use with fanSINKs are customer specified and provided.
fanSINKS can be purchased via ATS’s global distribution network, including Mouser and Digi-Key and Sager. Also, Sager provides customer specific value add of fans to meet customer application requirements.
Does your design need cooling for hot components not getting enough air or have components that simply need spot cooling?
The ATS fanSINK line is now available in sizes from 27mm to 84mm. Engineers can now easily add industry leading thermal management across a very wide set of component footprints.
Expanding the Internet of Things (IOT) into time-critical applications such as with autonomous vehicles, means finding ways to reduce data transfer latency. One such way, edge computing, places some computing as close to connected devices as possible. Edge computing pushes intelligence, processing power and communication capabilities from a network core to the network edge, and from an edge gateway or appliance directly into devices. The benefits include improved response times and better user experiences.
While cloud computing relies on data centers and communication bandwidth to process and analyze data, edge computing provides a means to lay some work off from centralized cloud computing by taking less compute intensive tasks to other components of the architecture, near where data is first collected. Edge computing works with IoT data collected from remote sensors, smartphones, tablets, and machines. This data must be analyzed and reported on in real time to be immediately actionable. [1]
FIgure 1: Edge Computing Architecture Scheme with Both the Computing Power and Latency Decreasing Downwards [2]
In the above edge computing scheme, developed by Inovex,
the layers are described as follows:
Cloud: On this layer
compute power and storage are virtually limitless. But, latencies and the cost
of data transport to this layer can be very high. In an edge computing
application, the cloud can provide long-term storage and manage the immediate
lower levels.
Edge
Node: These nodes are
located before the last mile of the network, also known as downstream. Edge nodes
are devices capable of routing network traffic and usually possess high compute
power. The devices range from base stations, routers and switches to
small-scale data centers.
Edge
Gateway: Edge
gateways are like edge nodes but are less powerful. They can speak most common
protocols and manage computations that do not require specialized hardware,
such as GPUs. Devices on this layer are often used to translate for devices on
lower layers. Or, they can provide a platform for lower-level devices such as mobile
phones, cars, and various sensing systems, including cameras and motion
detectors.
Edge
Devices: This
layer is home to small devices with very limited resources. Examples include
single sensors and embedded systems. These devices are usually purpose-built
for a single type of computation and often limited in their communication
capabilities. Devices on this layer can include smart watches, traffic lights and
environmental sensors. [2]
Today, edge computing is becoming essential where time-to-result must be minimized, such as in smart cars. Bandwidth costs and latency make crunching data near its source more efficient, especially in complex systems like smart and autonomous vehicles that generate terabytes of telemetry data. [3]
Figure 2: A Small Scale Edge Computing Device from LeapMind [4]
Besides vehicles, edge computing examples serving the IoT include
smart factories and homes, smartphones, tablets, sensor-generated input,
robotics, automated machines on manufacturing floors, and distributed analytics
servers used for localized computing and analytics.
Major technologies served by edge computing include
wireless sensor networks, cooperative distributed peer-to-peer ad-hoc
networking and processing, also classifiable as local cloud/fog computing,
distributed data storage and retrieval, autonomic self-healing networks, remote
cloud services, augmented reality and virtual reality. [5]
Autonomous Vehicles and Smart Cars
New so-called autonomous vehicles have enough computing
hardware they could be considered mobile data centers. They
generate terabytes of data every day. A single vehicle running for 14 to 16 hours
a day creates 1-5TB of raw data an hour and can produce up to 50TB a day. [6]
A moving self-driving car, sending a live stream continuously to servers, could meet disaster while waiting for central cloud servers to process the data and respond back to it. Edge computing allows basic processing, like when to slow down or stop, to be done in the car itself. Edge computing eliminates the dangerous data latency.
Figure 3: Edge Computing Reduces Data Latency to Optimize Systems in Smart and Autonomous Vehicles [7]
Once an autonomous car is parked, nearby edge computing
systems can provide added data for future trips. Processing this close to the
source reduces the costs and delays associated with uploading to the cloud.
Here, the processing does not occur in the vehicle itself.
Other Edge Computing Applications
Edge computing enables industrial and healthcare providers
to bring visibility, control, and analytic insights to many parts of an
infrastructure and its operations—from factory shop floors to hospital
operating rooms, from offshore oil platforms to electricity production.
Machine learning (ML) benefits greatly from edge computing.
All the heavy-duty training of ML algorithms can be done on the cloud and the
trained model can be deployed on the edge for near real-time or true real-time
predictions.
For manufacturing uses, edge computing devices can translate data from proprietary systems to the cloud. The capability of edge technology to perform analytics and optimization locally, provides faster responses for more dynamic applications, such as adjusting line speeds and product accumulation to balance the line. [8]
Figure 4: EdgeBoard by Baidu is a Computing Solution for Edge-Specific Applications [9]
Edge Computing Hardware
Processing power at the edge needs to be matched to the
application and the available power to drive an edge system operation. If
machine vision, machine learning and other AI technologies are deployed,
significant processing power is necessary. If an application is more modest,
such as with digital signage, the processing power may be somewhat less.
Intel’s Xeon D-2100 processor is made to support edge computing. It is a lower power, system on chip version of a Xeon cloud/data server processor. The D-2100 has a thermal design point (TDP) of 60-110W. It can run the same instruction set as traditional Intel server chips, but takes that instruction set to the edge of the network. Typical edge applications for the Xeon D-2100 include multi-access edge computing (MEC), virtual reality/augmented reality, autonomous driving and wireless base stations. [10]
Figure 5: The D-2100 Processor Dissipates Between 60 -110W. Thermal Management Depends on the Type of Device and Where it is Used [11]
Thermal management of the D-2100 edge focused processor is largely determined by the overall mechanical package the edge application takes. For example, if the application is a traditional 1U server, with sufficient air flow into the package, a commercial off the shelf, copper or aluminum heat sink should provide sufficient cooling. [11]
Figure 6: An Edge Computing Server from ATOS Featuring the Xeon D-2187 from Intel’s D-2100 Family of Processors [12]
An example of a more traditional package for edge computing
is the ATOS system shown in Figure 6. But, for less common packages, where
airflow may be less, more elaborate approaches may be needed. For example, heat
pipes may be needed to transport excess processor heat to another part of the
system for dissipation.
One design uses a vapor chamber integrated with a heat sink. Vapor chambers are effectively flat heat pipes with very high thermal conductance and are especially useful for heat spreading. In edge hardware applications where there is a small hot spot on a processor, a vapor chamber attached to a heat sink can be an effective solution to conduct the heat off the chip.
Figure 7: Coca-Cola’s Freestyle Fountain, a Non-Traditional Edge Computing System, Features an Intel I7 CPU, DRAM, Touchscreen, WiFi and HiDef Display [13]
The Nvidia Jetson AGX Xavier is designed for edge computing applications such as logistics robots, factory systems, large industrial UAVs, and other autonomous machines that need high performance processing in an efficient package.
Figure 8: Nvidia’s Jetson AGX Xavier Produces Little Heat But Could Have Thermal Issues in Edge Computing Applications [14]
Nvidia has modularized the package, proving the needed supporting semiconductors and input/output ports. While it looks like if could generate a lot of heat, the module only produces 30W and has an embedded thermal transfer plate. However, any edge computing deployment of this module, where it is embedded into an application, can face excess heat issues. A lack of system air, solar loading, impact of heat from nearby devices can negatively impact a module in an edge computing application.
Figure 9: Nvidia’s Development Kit for the Jetson AGX Xavier Includes Heat Sink and Heat Pipes [15]
Nvidia considers this in their development kit for this
module. It has an integrated thermal management solution featuring a heat sink
and heat pipes. Heat is transferred from the module’s embedded thermal transfer
plate to the heat pipes then to the heat sink that is part of the solution.
For a given edge computing application, a thermal solution
might use heat pipes attached to a metal chassis to dissipate heat. Or it could
combine a heat sink with an integrated vapor chamber. Studies by Glover, et al
from Cisco have noted that for vapor chamber heat sinks, the thermal resistance
value varies from 0.19°C/W to 0.23°C/W for 30W of power. [16]
A prominent use case for edge computing is in the smart factory empowered by the Industrial Internet of things (IIoT). As discussed, cloud computing has drawbacks due to latency, reliability through the communication connections, time for data to travel to the cloud, get processed and return. Putting intelligence at the edge can solve many if not all these potential issues. The Texas Instruments (TI) Sitara family of processors was purpose built for these edge computing machine learning applications.
Figure 10: TI’s Sitara Processors are Design for Edge Computing Machine Learning Applications [17]
Smart factories apply machine learning in different ways.
One of these is training, where machine learning algorithms use computation
methods to learn information directly from a set of data. Another is
deployment. Once the algorithm learns, it applies that knowledge to finding
patterns or inferring results from other data sets. The results can be better
decisions about how a process in a factory is running. TI’s Sitara family can execute a trained
algorithm and make inferences from data sets at the network edge.
The TI Sitara AM57x devices were built to perform machine
learning in edge computing applications including industrial robots, computer
vision and optical inspection, predictive maintenance (PdM), sound
classification and recognition of sound patterns, and tracking, identifying,
and counting people and objects. [18,19]
This level of machine learning processing may seem like it would require sophisticated thermal management, but the level of thermal management required is really dictated by the use case. In development of its hardware, TI provides guidance with the implementation of a straight fin heat sink with thermal adhesive tape on its TMDSIDK574 AM574x Industrial Development Kit board.
Figure 11: TI TMDSIDK574 AM574x Industrial Development Kit [20]
While not likely an economical production product, it
provides a solid platform for the development of many of the edge computing
applications that are found in smart factories powered by IIoT. The straight
fin heat sink with thermal tape is a reasonable recommendation for this kind of
application.
Most edge computing applications will not include a lab bench or controlled prototype environment. They might involve hardware for machine vision (an application of computer vision). An example of a core board that might be used for this kind of application is the Phytec phyCORE-AM57x. [21]
Figure 12: The Phytec phyCORE-AM57x Can Be used in Edge Computing Machine Vision Applications [22]
Machine vision being used in a harsh, extreme temperature industrial environment might require not just solid thermal management but physical protection as well. Such a use case could call for thermal management with a chassis. An example is the Arrow SAM Car chassis developed to both cool and protect electronics used for controlling a car.
Figure 13: Chassis for Automotive Application that Protects Components and Provides Thermal Management [23]
Another packaging example from the SAM Car is the chassis shown below, which is used in a harsh IoT environment. This aluminum enclosure has cut outs and pockets connecting to the chips on the internal PCB. The chassis acts as the heat sink and provides significant protection in harsh industrial environments.
Figure 14: Aluminum Chassis with Cut Outs and Pocketts to the Enclosed PCB with Semiconductors [23]
Edge computing cabinetry is small in scale (e.g. less than 10 racks), but powerful in information. It can be placed in nearly any environment and location to provide power, efficiency and reliability without the need for the support structure of a larger white space data center.
Figure 15: The Jetson TX2 Edge Computing Platform from Nvidia [24]
Still, racks used in edge cabinets can use high levels of processing power. The enclosure and/or certain components need a built-in, high-performance cooling system.
Hardware OEMs like Rittal build redundancy into edge systems. This lets other IT assets remain fully functional and operational, even if one device fails. Eliminating downtime of the line, preserving key data and rapid response all contribute to a healthier bottom line.
Although edge computing involves fewer racks, the data needs vital cooling protection. For edge computers located in remote locations, the availability of cooling resources may vary. Rittal provides both water and refrigerant-based options. Refrigerant cooling provides flexible installation, water based cooling brings the advantage of ambient air assist, for free cooling. [25]
Figure 16: LiquidCool Immersion Cooling Technology Eliminates the Need for Air Cooling
LiquidCool’s technology collects server waste heat inside a
fluid system and transports it to an inexpensive remote outside heat
exchanger. Or, the waste heat can be re-purposed. In one IT closet-based edge
system, fluid-transported waste heat is used for heating an adjacent room. [26]
Green Revolution Cooling provides ICEtank turnkey data centers built inside ISO shipping containers for edge installations nearly anywhere. The ICEtank containers feature immersion cooling systems. Their ElectroSafe coolant protects against corrosion, and the system removes any need for chillers, CRACs (computer room ACs) and other powered cooling systems. [27]
A Summary Chart of Suggested Cooling for Edge Computing
The following chart summarizes air cooling options for Edge Computing applications:
Figure 17: Edge Computing Air Cooling Options Summary Chart [click for larger version]
The Leading Edge
The edge computing marketplace is currently
experiencing a period of unprecedented growth. Edge market revenues are
predicted to expand to $6.72 billion by 2022 as it supports a global
IoT market expected to top $724 billion by 2023. The accumulation of IoT data,
and the need to process it at local collection points, will continue to drive
the deployment of edge computing. [28,29]
As more businesses and industries shift from enterprise to
edge computing, they are bringing the IT network closer to speed up data communications.
There are several benefits, including reduced data latency, increased real-time
analysis, and resulting efficiencies in operations and data management. Much critical
data also stays local, reducing security risks.
“Glover,
G., Chen, Y., Luo, A., and Chu, H., “Thin Vapor Chamber Heat Sink and Embedded
Heat Pipe Heat Sink Performance Evaluations”, 25th IEEE Symposium, San Jose, CA
USA 2009.
The design of a printed circuit board (PCB) is a complicated process that requires engineers to consider a number of different issues before the board is ready to move beyond prototype and into production. Engineers must think about the physical constraints of a board on component size and placement, the electrical interaction between components, the signal loss through wires and traces, and the thermal management of each component and the system as a whole. [1]
ATS maxiFLOW heat sink with superGRIP attachment on a PCB. (Advanced Thermal Solutions, Inc.)
With all of that to consider, it is no wonder that many designs go through several iterations before moving into the production stage. Since the process is already complex and there is a certain amount of trial-and-error in designing a PCB, engineers will look for ways to avoid unnecessary rework that will add significant cost to the project in terms of both time and money.
As noted in a previous article, the type of heat sink attachment technology that an engineer chooses will impact the ease with which a design can be reworked and the amount of damage to the board that will be caused if a change needs to be made.
Push pins, threaded standoffs and z-clips require holes or anchors be drilled into a board, which leaves permanent damage if a component needs to be moved to a new location and could also impact signal routing. There is even the possibility of a short in installation, which also would damage the board. [2]
Non-mechanical attachments such as thermally conductive tape and epoxy are not guaranteed to provide the optimal thermal management because there is “risk of die damage and poor thermal performance due to uneven heat sink placement,” according to a case study from the Altera Corporation. [3]
The case study also said that thermal tape and epoxy have “high risk of damaging the device or PCB” when compared to mechanical attachment technology coupled with thermal interface material (TIM) or phase change material (PCM). In fact, to remove a heat sink attached with epoxy requires an even temperature of 115-120°C.
As the video below shows, removing thermal tape from a heat sink (even one that is not attached to a board) requires a lot of work and tools. If the heat sink is attached to a component, the process to remove it could damage the board or other devices in the vicinity:
A recent chart from NEMI (National Electronics Manufacturing Initiative) indicated that the cost of assembly can be very high per I/O (input/output) on the PCB – considering some of the new BGAs have hundreds of I/O and there are dozens of BGAs on the board, the cost can be prohibitively expensive to put together a board irrespective of the product sector. [4] Obviously, full reworks necessitated by the use of damaging heat sink attachments raise those costs exponentially.
Board assembly roadmap from NEMI showing the conversion costs by product sector. [4]
Advanced Thermal Solutions, Inc. (ATS) has created a mechanical attachment technology that makes rework easy and allows engineers to make changes to the design without damaging the PCB or the components. superGRIP™ is a two-part attachment system with a plastic frame clip that fastens around the edge of the component and a metal spring clip that fits between the fins of the heat sink and quickly and easily attaches to the frame.
As the video below demonstrates, superGRIP™ can be installed and removed with common household tools and will provide a steady, firm pressure to ensure optimal thermal performance of the heat sink and the reliability of the device:
The advantage of superGRIP™ is not limited to its ease of use and the time and money that will be saved in reworking a PCB design. The pressure strength and security of the superGRIP™ attachment system allows the use of high-performance phase change materials that can improve heat transfer by as much as 20 times over standard thermal tapes. [4]
superGRIP™ comes with Chomerics Thermflow T-766, a foil PCM with a thickness of 0.0035 millimeters that has an operating range of -55°C to 125°C. According to Chomerics, the T-766 and other traditional non-silicone thermal interface pads “completely fill interfacial air gaps and voids. They also displace entrapped air between power dissipating electronic components. Phase-change materials are designed to maximize heat sink performance and improve component reliability.” [5]
Chomerics added, “Upon reaching the required melt temperature, the pad will fully change phase and attain minimum bond-line thickness (MBLT) – less than 0.001 inch or 0.0254 mm, and maximum surface wetting. This results in practically no thermal contact resistance due to a very small thermal resistance path.”
The combination of frame and spring clip provides uniform force over the heat sink and ensures no movement to optimize the impact of the PCM, while not damaging the solder holding the BGA component in place on the board. ATS engineers designed the attachment technology so that the in-plane and normal forces of both the frame and the spring clip hold the heat sink without stressing the solder even through NEBS (Network Equipment Building Systems) shock and vibration testing. [6]
Save time, save money, and avoid unnecessary headaches during the design phase by using ATS superGRIP™ technology.
For more information about Advanced Thermal Solutions, Inc. (ATS) thermal management consulting and design services, visit www.qats.com or contact ATS at 781.769.2800 or ats-hq@qats.com.
In 1965, Fairchild Semiconductor Director of R&D and soon to be Intel co-founder Gordon Moore wrote “The Future of Integrated Electronics,” which was intended as an internal paper to define the most cost-effective number of components per integrated circuit. As he looked ahead to the next decade, Moore argued that the number of components per chip would double every year.
The paper was edited and published by Electronics in 1965 as “Cramming More Components onto Integrated Circuits”. Ten years later, Moore, then with Intel, spoke at the IEEE International Electron Devices Meeting and showed that his initial prediction was correct and estimated that the rate of increase would slow to “a doubling every two years, rather than one.”
superGRIP heat sink attachment technology offer minimal addition to component footprint on densely packed PCB. (Advanced Thermal Solutions, Inc.)
This prediction has now become widely known as Moore’s law. It has become a tenet of the electronics community and continues to propel the industry forward at a time when the number of transistors on a chip (which was around 65,000 in 1975) now exceeds one billion. [1]
These high-powered components are common on printed circuit boards (PCB) in every day electronics from mobile devices to computers to automobiles. Recently, the Defense Advanced Research Program Agency (DARPA) announced that it will spend $200 million on the Electronics Resurgence Initiative to seek new materials and manufacturing techniques in expectation that Moore’s law will come to a natural end. [2]
Not only are the components themselves getting higher-powered, but increased demand for functionality in ever-smaller packages has meant that these components are increasingly being squeezed into tighter areas. A 2012 article on Tech Design Forums, based on information from Mentor Graphics’ Technology Leadership Awards, indicated that while PCB size had been “relatively constant,” the “average number of components has quadrupled in 15 years.” [3]
As the forum noted, “Despite attempts by IC (integrated circuit) suppliers to cut power dissipation, as IC speeds and densities increase so does the heat they dissipate. And putting these ICs into smaller and smaller form factors compounds the problem. This causes significant thermal management challenges that must be met at the IC package, PCB and system levels.”
OCM Manufacturing, a low- to mid-volume manufacturer of electronics products, offered a chart that detailed standard spacing of components on a PCB, but also added, “With that said, there are no hard and fast rules for component spacing. Tightly packed components may have very good yield and problems may arise only during rework.” [4]
Match each component in the rows with whatever it’s adjacent to in the columns to see the preferred and minimum spacing between those two components, in millimeters. [4] (OCM Manufacturing)
Of course, all of that power will inevitably lead to increased heat across the system. Coupled with the decrease in space between components, which puts constraints on the amount of airflow across a component and leads to heat from one chip being passed on to the next, thermal management is a critical aspect of PCB design to an even greater extent than before. [5]
As Dr. Kaveh Azar, founder and CEO of Advanced Thermal Solutions, Inc. (ATS), wrote in ECN Magazine, “An engineer starting the process of thermal management must first determine the cooling needed and then consider the mechanical aspects of attaching the heat sink.” [6]
He added, “The thermal consideration is foremost on our decision tree. Once we have resolved the cooling issue, including the heat sink size and the type of thermal interface material (TIM) needed, we need to ask the question of how this heat sink will be attached to the device or the PCB.”
There are several options for design engineers to consider, but each comes with its own set of challenges. Thermal tape and thermal epoxies [7] would obviously add nothing to the existing component footprint, but tape has proven better for low-powered chips and epoxies require time to cure and are essentially permanent, making potential rework more time-consuming and costly.
Push pins, threaded standoffs and z-clips are mechanical attachment technologies that are common in the electronics industry but all require expanded footprints as well as holes or anchors in the PCB, which may not be available on high-density boards. Holes and anchors also make signal routing more difficult in the design phase and there is a possibility of a standoff or solder anchor causing a short during installation that could result in damage to the board. [8]
To meet this need, ATS developed superGRIP™. The two-part attachment system features a plastic frame clip that fastens securely around the perimeter of the component and a metal spring clip that slips through the fins of a heat sink and locks to the frame clip on both ends. [9]
The system is designed to need minimal space around the component. [10] The frame clip is made of a plastic resin that allows it to be very thin but also very strong, which was demonstrated during shock and vibration testing. The interior frame profile locks securely around the bottom edge and sides of the component package. The horseshoe tabs secure the clip to ensure the proper pressure on the heat sink.
The following chart shows the superGRIP™ clearance guidelines, although custom options are available and may be needed depending on the design:
The required board keep-out region for ATS superGRIP heat sink attachment technology. (Advanced Thermal Solutions, Inc.)
superGRIP™ was also designed and tested to ensure maximum airflow through the heat sink. In a tightly-packed system where airflow is at a premium, superGRIP™ provides the necessary attachment security with only minimal impact on the flow. In addition, the plastic used in the frame clip stays cool in high-heat environments, rather than adding fuel to a potentially combustible situation.
CFD simulations with ATS superGRIP attachment demonstrating its minimal impact on airflow across a system. (Advanced Thermal Solutions, Inc.)
Unlike other attachment technologies, superGRIP™ also requires no separate tooling and can be installed or released with a common tool such as a screwdriver. [11] This makes any potential rework easier. It is important to note the direction of the airflow when placing a heat sink, so it must also be considered when placing the frame clip as well.
For more information about Advanced Thermal Solutions, Inc. (ATS) thermal management consulting and design services, visit www.qats.com or contact ATS at 781.769.2800 or ats-hq@qats.com.